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ABSTRACT

The Kernel Least Mean Square (KLMS) algorithm is a pop-
ular algorithm in nonlinear adaptive filtering due to its sim-
plicity and robustness. In kernel adaptive filters, the statis-
tics of the input to the linear filter depends on the param-
eters of the kernel employed. A Gaussian KLMS has two
design parameters; the step size and the kernel bandwidth.
Thus, its design requires analytical models for the algorithm
behavior as a function of these two parameters. This pa-
per studies the steady-state behavior and the stability limits
of the Gaussian KLMS algorithm for Gaussian inputs. De-
sign guidelines for the choice of the step size and the kernel
bandwidth are then proposed based on the analysis results.
A design example is presented which validates the theoretical
analysis and illustrates its application.

1. INTRODUCTION

Many practical applications (e.g., in communications and
bioengineering) require nonlinear signal processing. Nonlin-
ear systems can be characterized by representations ranging
from higher-order statistics to series expansion methods [1].
Nonlinear system identification methods based on reproduc-
ing kernel Hilbert spaces (RKHS) have gained popularity
over the last decades [2, 3]. More recently, kernel adaptive
filtering has been recognized an appealing solution to the
nonlinear adaptive filtering problem, as working in RKHS
allows the use of linear structures to solve nonlinear estima-
tion problems [4]. Algorithms developed using these ideas
include the kernel least-mean-square (KLMS) algorithm [5],
the kernel recursive-least-square (KRLS) algorithm [6], the
kernel-based normalized least-mean-square (KNLMS) algo-
rithm and the affine projection (KAPA) algorithm [7, 8].

In addition to the choice of the usual linear adaptive fil-
ter parameters, designing kernel adaptive filters requires the
choice of the kernel parameters. The choice of these param-
eters to achieve a prescribed performance is still an open
issue. An analysis of the stochastic behavior of the Gaus-
sian KLMS algorithm, i.e., KLMS with Gaussian kernel, for
Gaussian inputs has been presented in [9]. Recursive ex-
pressions have been derived for the mean and mean-square
adaptive weight behavior.

Building on the results obtained in [9], this paper stud-
ies the steady-state behavior and the stability of the Gaus-
sian KLMS algorithm for Gaussian inputs. New expressions
are derived for the moments of the linear filter input signal
which facilitate the new analysis. A new formulation is pro-
posed for the evolution of the weight second order moments
which leads to a closed form expression for the steady-state
mean-square error and allows the numerical determination
of stability limits. Based on these results, design guidelines
are proposed for the choice of the algorithm parameters in
order to achieve a prescribed performance.

This work was partially supported by CNPq under grants No.
473123/2009-6, 305377/2009-4 and 140672/2007-9.

2. FINITE-ORDER KERNEL-BASED
ADAPTIVE FILTERS

The block diagram of a kernel-based adaptive system iden-
tification problem is shown in Figure 1. Here, U is a
compact subspace of R

q, κ : U × U → R is a reproduc-
ing kernel, (H, 〈·,·〉H) is the induced RKHS with its inner
product and z(n) is a zero-mean additive noise uncorre-
lated with any other signal. The representer theorem [2]
states that ψ(·) that minimizes the squared estimation error
PN

n=1[d(n) − ψ(u(n))]2 given N input vectors can be writ-

ten as the kernel expansion ψ(·) =
PN

n=1 αn κ(·, u(n)). For
real-time applications, a finite order model

ψ(·) =
M

X

j=1

αj κ(·, u(ωj)), (1)

must be used, where M is finite and the M kernel func-
tions κ(·, u(ωj)) form the dictionary. The model order can
be controlled with reduced computational complexity using,
for instance, a coherence-based sparsification rule [7, 8] that
inserts the kernel κ(·, u(%)) into the dictionary if

max
j

|κ(u(%), u(ωj))| ≤ ε0 (2)

where ε0 determines the coherence of the dictionary. Other
criteria and sparsification rules were listed in [4]. In the
following, we assume that the dictionary is known and that
its size M is finite1.
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Figure 1: Kernel-based adaptive system identification.

3. MEAN SQUARE ERROR

This paper studies the kernel-based nonlinear adaptive sys-
tem identification problem illustrated in Figure 1 for a sta-
tionary environment, zero-mean independent and identically

1It was shown in [7] that M determined under rule (2) is finite.
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distributed (i.i.d.) Gaussian (q × 1) input vectors u(n) so
that one has E{u(n − i)u!(n − j)} = 0 for i '= j, and for
the Gaussian kernel

κ(u, u′) = exp



−‖u − u′‖2

2ξ2

ff

(3)

where ξ is the kernel bandwidth [4]. The components of
the input vector u(n) can be correlated. The stationarity
assumption holds when ψ(u(n)) is stationary for u(n) sta-
tionary. This is satisfied by several nonlinear systems used
to model practical situations, such as memoryless, Wiener
and Hammerstein systems.

Let κω (n) be the vector of kernels at time n, that is,

κω (n) = [κ(u(n), u(ω1)), . . . ,κ(u(n), u(ωM ))]!, (4)

where the u(ωi), i = 1, . . . , M denotes input vectors chosen
to build the dictionary. From Figure 1 and (1),

d̂(n) = α!(n) κω(n), (5)

where α(n) = [α1(n), . . . ,αM (n)]!. The estimation error is

e(n) = d(n) − d̂(n). (6)

Squaring both sides of (6) and taking the expected value
yields the mean-square error (MSE) Jms(n) = E[e2(n)]

Jms(n) = E[d2(n)] − 2p!
κd α(n) + α!(n) Rκκ α(n) (7)

where Rκκ = E[κω (n) κ!
ω (n)] is the input kernel correla-

tion matrix and pκd = E[d(n)κω(n)] is the cross-correlation
vector between κω (n) and d(n).

Assuming that Rκκ is positive definite, the optimum
weight vector is

αopt = R−1
κκ pκd (8)

and the minimum MSE is given by

Jmin = E
ˆ

d2(n)
˜

− p!
κdR−1

κκ pκd. (9)

These are the well-known expressions of the Wiener solution
and minimum Jms, where the input signal vector has been
replaced by the input kernel vector. Thus, determining the
optimum αopt requires the determination of Rκκ given the
statistical properties of u(n) and the kernel function.

3.1 Input kernel vector correlation matrix

Let us introduce the following notations

‖u(n) − u(ω")‖
2 = y!

2 O2 y2

‖u(n) − u(ω")‖
2 + ‖u(n) − u(ωp)‖

2 = y!
3 O3 y3, % '= p

with

y2 = [u!(n) u!(ω")]
!

y3 = [u!(n) u!(ω") u!(ωp)]
!

and

O2 =

»

I −I
−I I

–

O3 =

"

2I −I −I
−I I 0
−I 0 I

#

where I is the (q×q) identity matrix and 0 is the null matrix.
Then, the (i, j)-th element of Rκκ can be determined using
the results in [10]2

[Rκκ]ij =

(

det
`

I2 + 2 O2 R2/ξ2
´−1/2

, i = j

det
`

I3 + O3 R3/ξ
2
´−1/2

, i '= j
(10)

with Rk the (kq × kq) correlation matrix of the vector yk,
Ik the (kq × kq) identity matrix, and det(·) the matrix de-
terminant.

4. SECOND-ORDER MOMENT ANALYSIS

The KLMS weight update equation for the system presented
in Figure 1 is [4]

α(n + 1) = α(n) + η e(n) κω (n). (11)

Defining the weight-error vector v(n) = α(n) − αopt leads
to the weight-error vector update equation

v(n + 1) = v(n) + η e(n) κω (n). (12)

The error equation is given by

e(n) = d(n) − κ!
ω (n)v(n) − κ!

ω (n) αopt (13)

and the optimal estimation error is

e0(n) = d(n) − κ!
ω (n)αopt. (14)

Substituting equation (13) into equation (12) yields

v(n + 1) = v(n) + η d(n)κω(n)

− η κ!
ω (n) v(n) κω (n) − η κ!

ω (n) αopt κω (n).
(15)

Using (13) and the independence assumption (IA), [11], we
obtain the expression for the MSE

Jms(n) = Jmin + tr{Rκκ Cv(n)} (16)

where Cv(n) = E[v(n) v!(n)] is the autocorrelation matrix
of v(n) and Jmin = E[e2

0(n)] is the minimum MSE.
Using IA and assuming e0(n) to be sufficiently close

to the optimal solution of the infinite order model so that
E[e0(n)] ≈ 0, the following recursion has already been de-
rived in [9] for the weight-error correlation matrix:

Cv(n + 1) =Cv(n) − η [Rκκ Cv(n) − Cv(n) Rκκ]

+ η2 T (n) + η2 Rκκ Jmin

(17a)

with

T (n) = E
h

κω (n) κ!
ω (n) v(n)v!(n) κω (n) κ!

ω (n)
i

. (17b)

Using IA, the element (i, j) of T (n) is given by

[T (n)]ij ≈

M
X

"=1

M
X

p=1

E{κωi(n)κω!(n)κωp(n)κωj (n)} [Cv(n)]"p
(18)

where κωq (n) = κ(u(n), u(ωq)). Depending on i, j, % and p,
we have [10, p. 100]:

2Note that as u(ωi) and u(ωj) are i.i.d., [Rκκ]ii = [Rκκ]jj for
all i, j and [Rκκ]ik = [Rκκ]jk for all i #= k and j #= k.
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µ1 := E{κωi(n)κω!(n)κωp(n)κωj (n)} with i = j = p = %.

Denoting y2 = [u!(n) u!(ωi)]
!, yields

µ1 =
ˆ

det(I2 + 4 O2 R2/ξ
2)

˜−1/2
(19)

µ2 := E{κωi(n)κω!(n)κωp(n)κωj (n)} with i '= j = p = %.

Denoting y3 = [u!(n) u!(ωi) u!(ωj)]
!, yields

µ2 = [det(I3 + O3′ R3/ξ
2)]−1/2 (20)

where O3′ =

"

4I −3I −I
−3I 3I 0
−I 0 I

#

.

µ3 := E{κωi(n)κω!(n)κωp(n)κωj (n)} with i = j '= p = %.

Denoting y3 = [u!(n) u!(ωi) u!(ωp)]!, yields

µ3 = [det(I3 + 2 O3 R3)/ξ
2]−1/2 (21)

µ4 := E{κωi(n)κω!(n)κωp(n)κωj (n)} with i = j '= p '= %.

Denoting y4 = [u!(n) u!(ωi) u!(ω") u!(ωp)]!, yields

µ4 = [det(I4 + O4 R4)/ξ
2]−1/2 (22)

where O4 =

2

6

4

4I −2I −I −I
−2I 2I 0 0
−I 0 I 0
−I 0 0 I

3

7

5
.

µ5 := E{κωi(n)κω!(n)κωp(n)κωj (n)} with i '= j '= p '= l.

Denoting y5 = [u!(n) u!(ωi) u!(ωj) u!(ω") u!(ωp)]
!,

µ5 = [det(I5 + O5 R5)/ξ
2]−1/2 (23)

where O5 =

2

6

6

6

4

4I −I −I −I −I
−I I 0 0 0
−I 0 I 0 0
−I 0 0 I 0
−I 0 0 0 I

3

7

7

7

5

.

Finally, the elements of T (n) are given by

[T (n)]ii =µ1[Cv(n)]ii +
M

X

"=1
" $=i

n

2µ2[Cv(n)]"i + µ3[Cv(n)]""

+ µ4

M
X

p=1
p $={",i}

[Cv(n)]"p

o

(24)

and, for j '= i,

[T (n)]ij =µ2 ([Cv(n)]jj + [Cv(n)]ii) + 2µ3[Cv(n)]ij

+
M

X

"=1
" $={j,i}

n

2µ4[Cv(n)]j" + 2µ4[Cv(n)]i"

+ µ4[Cv(n)]"" + µ5

M
X

p=1
p $={i,j,"}

[Cv(n)]"p

o

(25)

which completes the evaluation of T (n) in (17) 3.

3The details on how µi are determined can be found in [9].

5. STEADY-STATE BEHAVIOR

Let cv(n) be the lexicographic representation of Cv(n), i.e.,
the matrix is stacked column-wise into a single vector.
Consider the family of (M ×M) matrices H ij , 1 ≤ i, j ≤ M ,
whose elements are given by

(i = j) :

8

>

>

<

>

>

:

[H ii]ii = 1 − 2ηrmd + η2µ1,
[H ii]pp = η2µ3, p '= i
[H ii]ip = η2µ2 − ηrod = [H ii]pi, p '= i
[H ii]pl = η2µ4, otherwise

(26)

(i '= j) :

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

[H ij ]ij = [H ij ]ji = 1
2
(1 − 2ηrmd + 2η2µ3)

[H ij ]pp = η2µ4, p '= i, j
[H ij ]ii = [H ij ]jj = η2µ2 − ηrod,
[H ij ]ip = [H ij ]pi = 1

2
(2η2µ4 − ηrod), p '= i, j

[H ij ]pj = [H ij ]jp = 1
2
(2η2µ4 − ηrod), p '= i, j

[H ij ]p" = η2µ5, otherwise
(27)

where rmd = [Rκκ]ii and rod = [Rκκ]ij . Finally, we define
the (M2 × M2) symmetric matrix G given by

G =
h

h11 h12 . . . h1M . . . hMM
i

(28)

with h"p the (M2 × 1) lexicographic representation of H "p.
Using these definitions, it can be shown that the lexico-

graphic representation of (17) can be written as

cv(n + 1) = G cv(n) + η2Jmin rκκ (29)

where rκκ is the lexicographic representation of Rκκ. The
closed-form solution of (29) is then [12]

cv(n) = Gn [cv(0) − cv(∞)] + cv(∞) (30)

where the steady-state value of cv(n) is given by

cv(∞) = η2Jmin(I − G)−1rκκ. (31)

From (31) and (16), we know now that the steady-state
of the MSE is given by

Jms(∞) = Jmin + tr{Rκκ Cv(∞)} (32)

where tr{Rκκ Cv(∞)} is the steady-state of the excess MSE,
denoted by Jex(∞).

Note that matrix G is symmetric, which implies that it
can be diagonalized and all its eigenvalues are real-valued.
Consequently, a necessary and sufficient condition for asymp-
totic stability of (29) is that all the eigenvalues of G lie inside
the interval ] − 1, 1[. The stability limit for η can thus be
numerically determined for given values of M and ξ.

6. TIME FOR CONVERGENCE

Assuming convergence, we define time for convergence as
the number Nε of iterations required for (29) to reach the
condition

||cv(∞) − cv(Nε)|| ≤ ε (33)

where ε is a design parameter, here used equal to 10−2.

7. DESIGN GUIDELINES

The analysis results are now used to establish design guide-
lines. Suppose one wishes to obtain a MSE which is less than
a specified value Jmax. The following procedure can be used:
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• For the given input signal, run a set of tests for different
values of ξ in which dictionaries are built for different
coherence values ε0. Then, choose ε0 that yields a suit-
able range of values of M for a wide range of ξ values.
From the test results, using the chosen ε0, combine each
value of ξ with the value of M obtained from simulation
in pairs (ξ, M).

• Using d(n) measurements, estimate E[d2(n)] and pκd.
Then, use (9) to obtain an estimate of Jmin.

• From the (ξ, M) pairs, keep only those that satisfy the
constraint Jmin < Jmax.

• For each remaining pair (ξ, M), compute the eigenvalues
of G for different values of η and keep the maximum value
of η, denoted as ηmax(ξ, M), ensuring these eigenvalues
belong to ]-1;1[.

• Using suitable (ξ,M) pairs and (32), search for values
of η so that η < ηmax(ξ, M), Jms(∞) ≤ Jmax and the
convergence time Nε satisfies (33) for a suitable value
of ε. Choose among the possible solutions using some
additional criterion if necessary.

8. SIMULATION RESULTS

A design example is now presented to verify the theory and
illustrate the design procedure. The input signal was a se-
quence of statistically independent vectors

u(n) = [u1(n) u2(n)]! (34)

with correlated samples satisfying u1(n) = 0.65u2(n)+ηu(n),
with u2(n) white Gaussian with variance σ2

u2
= 1 and ηu(n)

white Gaussian so that σ2
u1

= 1. The nonlinear system to be
identified was defined by

ψ (u(n)) =
3

X

i=0

ai+1 exp



−||u(n − i) − bi||
2

s2
i

ff

(35)

where a = 0.5 and

b0 = [−0.1454 − 0.3862]! b1 = [1.3162 − 0.7965]!

b2 = [0.1354 0.4178]! b3 = [0.8199 − 0.8544]!

s = [0.8063 0.9873 0.2756 0.7662]

with si in (35) being the i-th entry of s. The nonlinear
system output was corrupted by a zero-mean white Gaussian
noise z(n), with variance σ2

z = 10−6. The required Jmax was
set to −16.8 dB.

After several tests, a coherence level ε0 = 10−3 has been
chosen. Kernel bandwidth ξ was varied from 0.1 to 50 in
increments of 0.01. For each value of ξ, dictionary dimen-
sions Mi were determined for i = 1, . . . , 1000 realizations of
the input process. Each realization used 500 input vectors
u(n). Each Mi was determined as the minimum value of M
required to achieve the coherence level ε0. The value M(ξ)
was determined as the average of all Mi, i = 1, . . . , 1000.

Jmin(ξ) was determined from (9) for each pair (ξ, M).
Figure 2 shows the pairs (ξ, M) satisfying the design ob-
jective Jmin(ξ) < −16.8 dB. The corresponding values of
Jmin(ξ, M) are shown in Figure 3. Interpolation was used to
facilitate the visualization.

Table 1 illustrates three possible designs, for ξ =
0.78, 1.04 and 1.33. For each pair (ξ, M), the step-size
η was chosen so that the algorithm was stable (η less
than ηmax(ξ, M) determined from the eigenvalues of G) and
Jms(∞) < −16.8 dB. The values of Jms(∞) and Jex(∞)
were determined from (32) and Nε was obtained from (33)
for ε = 10−2. From these three cases, using the pair
(M, ξ, η) = (2, 1.33, 0.0601) seems to yield a good design

choice, as it leads to Jmin = −16.894 dB < Jmax and
Jms(∞) = −16.803dB with convergence time Nε = 317 iter-
ations.

Other design criteria could be accommodated using the
results derived in this paper. Figures 4 and 5 show, respec-
tively, the achievable MSE and excess MSE determined from
(32) for the chosen range of values for ξ. Figure 6 shows the
corresponding convergence times for ε = 10−2 in (33). All
plots are interpolated for easier visualization. From these
figures, it is clear that different design choices could be ac-
commodated.

Finally, Figure 7 shows Monte Carlo simulation results
to illustrate the accuracy of the analytical model derived for
the three cases shown in Table 1. Figure 7(a) shows excellent
matching between simulations, averaged over 500 runs, and
the theoretical predictions from (16) and (30). Figures 7(b)-
(d) compare simulated steady-state results with theoretical
predictions using (31). The matching is clearly excellent.
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Figure 2: Average dictionary length with Jmin(ξ) < Jmax.
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Figure 3: Jmin(ξ) such that Jmin(ξ) < Jmax.
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Figure 4: Steady-state of MSE with Jms < Jmax.

9. CONCLUSIONS

This paper studied the steady-state behavior and the sta-
bility of the Gaussian KLMS algorithm for Gaussian inputs.
New analytical results were presented to describe the KLMS
steady-state performance. Moreover, a new recursive ex-
pression was provided for the time evolution of the adaptive
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Figure 5: Steady-state of excess MSE with Jms < Jmax.
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Figure 6: Number of iterations needed for convergence of the
filter with Jms < Jmax.

Table 1: Summary of the simulation results.

ξ M η Jmin Jms(∞) Jex(∞) Nε

[dB] [dB] [dB]

0.78 4 0.0298 -16.859 -16.817 -37.005 844
1.04 3 0.0618 -17.001 -16.901 -33.250 329
1.33 2 0.0601 -16.894 -16.803 -33.626 317

weight-error vector fluctuations which allows the numerical
determination of the step-size stability limit for given kernel
bandwidth and model order. Based on these original theo-
retical results, new design guidelines were proposed for the
KLMS algorithm. A design example was presented to verify
the accuracy of the theory and to illustrate its applicability
in design.
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